Spastic tail muscles recover from myofiber atrophy and myosin heavy chain transformations in chronic spinal rats.
نویسندگان
چکیده
Without intervention after spinal cord injury (SCI), paralyzed skeletal muscles undergo myofiber atrophy and slow-to-fast myofiber type transformations. We hypothesized that chronic spasticity-associated neuromuscular activity after SCI would promote recovery from such deleterious changes. We examined segmental tail muscles of chronic spinal rats with long-standing tail spasticity (7 mo after sacral spinal cord transection; older chronic spinals), chronic spinal rats that experienced less spasticity early after injury (young chronic spinals), and rats without spasticity after transection and bilateral deafferentation (spinal isolated). These were compared with tail muscles of age-matched normal rats. Using immunohistochemistry, we observed myofiber distributions of 15.9 +/- 3.5% type I, 18.7 +/- 10.7% type IIA, 60.8 +/- 12.6% type IID(X), and 2.3 +/- 1.3% type IIB (means +/- SD) in young normals, which were not different in older normals. Young chronic spinals demonstrated transformations toward faster myofiber types with decreased type I and increased type IID(X) paralleled by atrophy of all myofiber types compared with young normals. Spinal isolated rats also demonstrated decreased type I myofiber proportions and increased type II myofiber proportions, and severe myofiber atrophy. After 4 mo of complete spasticity (older chronic spinals), myofiber type transformations were reversed, with no significant differences in type I, IIA, IID(X), or IIB proportions compared with age-matched normals. Moreover, after this prolonged spasticity, type I, IIA, and IIB myofibers recovered from atrophy, and type IID(X) myofibers partially recovered. Our results indicate that early after transection or after long-term spinal isolation, relatively inactive tail myofibers atrophy and transform toward faster myofiber types. However, long-term spasticity apparently produces neuromuscular activity that promotes recovery of myofiber types and myofiber sizes.
منابع مشابه
The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.
Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific...
متن کاملSpace shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway.
To elucidate the mechanisms of microgravity-induced muscle atrophy, we focused on fast-type myosin heavy chain (MHC) degradation and expression of proteases in atrophied gastrocnemius muscles of neonatal rats exposed to 16-d spaceflight (STS-90). The spaceflight stimulated ubiquitination of proteins, including a MHC molecule, and accumulation of MHC degradation fragments in the muscles. Semiqua...
متن کاملTail muscles become slow but fatigable in chronic sacral spinal rats with spasticity.
Paralyzed skeletal muscle sometimes becomes faster and more fatigable after spinal cord injury (SCI) because of reduced activity. However, in some cases, pronounced muscle activity in the form of spasticity (hyperreflexia and hypertonus) occurs after long-term SCI. We hypothesized that this spastic activity may be associated with a reversal back to a slower, less fatigable muscle. In adult rats...
متن کاملDenervation Causes Fiber Atrophy and Myosin Heavy Chain Co-Expression in Senescent Skeletal Muscle
Although denervation has long been implicated in aging muscle, the degree to which it is causes the fiber atrophy seen in aging muscle is unknown. To address this question, we quantified motoneuron soma counts in the lumbar spinal cord using choline acetyl transferase immunhistochemistry and quantified the size of denervated versus innervated muscle fibers in the gastrocnemius muscle using the ...
متن کاملSpastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 2 شماره
صفحات -
تاریخ انتشار 2007